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Abstract. We analyze the one-loop effects (strong and electroweak) on the unconventional top quark decay
mode t→ H+ b within the MSSM. The results are presented in the on-shell renormalization scheme with
a physically well motivated definition of tan β. The study of this process at the quantum level is useful to
unravel the potential supersymmetric nature of the charged Higgs emerging from that decay. As compared
with the standard mode t → W+ b, the corrections to t → H+ b are large, slowly decoupling and persist
at a sizeable level even for all sparticle masses well above the LEP 200 discovery range. As a matter of
fact, the potential size of the SUSY effects, which amount to corrections of several ten percent, could
counterbalance the standard QCD corrections and even make them to appear with the “wrong” sign.
Therefore, if the charged Higgs decay of the top quark is kinematically allowed – a possibility which is not
excluded by the existing measurements of the branching ratio BR(t → W+ b) at the Tevatron – it could
be an invaluable laboratory to search for “virtual” supersymmetry. While a first significant test of these
effects could possibly be performed at the upgraded Tevatron, a more precise verification would most likely
be carried out in future experiments at the LHC.

1 Introduction

Recently, the Standard Model (SM) of the strong and elec-
troweak interactions has been crowned with the discovery
of the penultimate building block of its theoretical struc-
ture: the top quark, t [1]. At present the best determi-
nation of the top-quark mass at the Tevatron reads as
follows [2]:

mt = 175± 6 GeV . (1)

While the SM has been a most successful framework to de-
scribe the phenomenology of the strong and electroweak
interactions for the last thirty years, the top quark it-
self stood, at a purely theoretical level – namely, on the
grounds of requiring internal consistency, such as gauge
invariance and renormalizability – as a firm prediction
of the SM since the very confirmation of the existence
of the bottom quark and the measurement of its weak
isospin quantum numbers [3]. With the finding of the top
quark, the matter content of the SM has been fully ac-
counted for by experiment. Still, the last building block of
the SM, viz. the fundamental Higgs scalar, has not been
found yet, which means that in spite of the great signif-
icance of the top quark discovery the theoretical mech-
anism by which all particles acquire their masses in the
SM remains experimentally unconfirmed. Thus, it is not
clear at present whether the SM will remain as the last
word in the phenomenology of the strong and electroweak
interactions around the Fermi’s scale or whether it will

be eventually subsumed within a larger and more fun-
damental theory. The search for physics beyond the SM,
therefore, far from been accomplished, must continue with
redoubled efforts. Fortunately, the peculiar nature of the
top quark (in particular its large mass – in fact, perhaps
the heaviest particle in the SM! – and its characteristic
interactions with the scalar particles) may help decisively
to unearth any vestige of physics beyond the SM.

In this paper, we shall focus our attention on hypothet-
ical top quark physics associated to the (minimal) SUSY
extension of the SM, the MSSM [4], which is at present
the most predictive framework for physics beyond the SM
and, in contradistinction to all other approaches, it has
the virtue of being a fully-fledged Quantum Field Theory.
Most important, on the experimental side the global fit
analyses to all indirect precision data within the MSSM
are comparable to those in the SM; in particular, the
MSSM analysis implies that mt = 172±5GeV [5], a result
which is compatible with the above mentioned experimen-
tal determinations of mt. Hints of this new phenomenol-
ogy may show up either in the form of direct or virtual
effects from supersymmetric Higgs particles or from the
“sparticles” themselves (i.e. the R-odd [4] partners of the
SM particles), in particular from the top-squark (“stop”)
which is the SUSY counterpart of the top quark. Due to
the huge mass of the latter, one expects that the top-stop
system is one of the most preferential chiral supermulti-
plets to which the Higgs sector should couple. Therefore,
top quark dynamics is deemed to be an ideal environment
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for Higgs phenomenology and a most suitable SUSY trig-
ger, if SUSY is there at all.

In the MSSM the spectrum of Higgs-like particles and
of Yukawa couplings is far and away richer than in the
SM. In this respect, a crucial fact affecting the results of
our work is that in such a framework the bottom-quark
Yukawa coupling may counterbalance the smallness of the
bottom mass, mb ' 5GeV , at the expense of a large
value of tanβ – the ratio of the vacuum expectation val-
ues (VEV’s) of the two Higgs doublets – the upshot being
that the top-quark and bottom-quark Yukawa couplings
(normalized with respect to the SU(2) gauge coupling) as
they stand in the superpotential, take on the form

λt ≡ ht
g

=
mt√

2MW sinβ
, λb ≡ hb

g
=

mb√
2MW cosβ

. (2)

Thus, depending on the actual value of tanβ, λb and λt
can be of the same order of magnitude, perhaps even show-
ing up in “inverse hierarchy”: λb > λt for tanβ > mt/mb.
Notice that due to the perturbative bound tanβ <∼ 70 one
never reaches a situation where λt << λb. In a sense, λb '
λt could be judged as a natural relation in the MSSM; it
can even be a necessary relation in specific SUSY-GUT
models, e.g. those based on t, b and τ Yukawa coupling
unification [6], at least at the unification point. Further-
more, one expects that if such a relation holds, then it is
not just the top-stop system, but also the bottom-sbottom
chiral supermultiplet that could play a momentous role in
the quantum physics of the top and bottom quarks. In-
deed, since the Higgs sector of the MSSM doubles that of
the SM, and it comes associated with the fermionic SUSY
partners – the so-called higgsinos –, one expects that in
the limit λb >∼ λt there should occur a very stimulating
dynamics triggered by the presence of a rich variety of po-
tentially large Yukawa-like interactions formed out of the
top/stop-bottom/sbottom-Higgs/higgsino fields.

A particularly brilliant form of this dynamics, on which
we shall focus our attention, is revealed through the study
of the quantum effects on the non-standard top quark de-
cay into a charged Higgs: t → H+ b. This decay, which
has already deserved some attention in the early litera-
ture on the subject [7], is not at all excluded by the recent
measurements (at the Tevatron) of the branching ratio of
the standard top quark decay, t → W+ b, as will be dis-
cussed in more detail in Sect. 2. The quantum effects on
t → H+ b, which we wish to compute in the framework
of the MSSM at one-loop, can be both strong and elec-
troweak like. Of these the conventional strong corrections
(QCD) mediated by gluons have already been treated in
detail [8]. Also the subset of strong supersymmetric cor-
rections mediated by gluinos, stop and sbottom squarks,
i.e. the SUSY-QCD corrections, has been discussed in [9].
Here, therefore, we will come to grips with the remaining
part – as a mater of fact, the largest and most difficult
part – of the MSSM corrections: namely, the multifari-
ous electroweak supersymmetric corrections produced by
squarks, sleptons, charginos, neutralinos and supersymme-
tric Higgs bosons, which we shall combine with the to-

tal strong (QCD +SUSY-QCD) corrections to obtain the
MSSM correction.

In the present study, we will closely follow the system-
atic pathway adopted in the treatment of the MSSM quan-
tum corrections to the canonical decay t→W+ b [10]–[12].
However, because of the Higgs particle in the final state,
we have to incorporate the details of the renormalization
of the Higgs sector of the MSSM, which substantially alter
the analytical counterterm structure of the t bH+-vertex
as compared to the conventional t bW+-vertex. In this pa-
per we take the point of view that the study of the decay
t→ H+ b is worthwhile provided that its branching ratio
is operative at a level BR(t → H+ b) > 10%, a condi-
tion which is not ruled out by the top quark experiments.
Theoretically, this is fully guaranteed provided that tanβ
is large enough (>∼ 30). In these conditions, the MSSM
one-loop corrections can typically be in the 50% ballpark.

The paper is organized as follows. In Sect. 2 the low-
est order relations concerning the Higgs sector and the
top quark decay are given. We also discuss the status of
the charged Higgs decay of the top quark in the light of
the recent data from Tevatron, and the prospects for its
detection. Section 3 discusses the renormalization of the
t bH+-vertex in the on-shell scheme with a physically well
motivated definition of tanβ. In Sect. 4 we present the
full analytical formulae for the one-loop corrected partial
width Γ (t→ H+ b) in the MSSM. The numerical analysis
and discussion, as well as the conclusions, are delivered in
Sect. 5.

2 Lowest order relations and determination
of BR(t→ H+ b) from experiment

In this paper we wish to emphasize the possibility that
a charged pseudoscalar, H±, involved in a possible un-
conventional decay of the top-quark, t → H+ b, be the
charged Higgs of the MSSM 1. A charged Higgs is nec-
essary in the MSSM since Supersymmetry requires the
existence of at least two Higgs SU(2)L-doublets with op-
posite weak-hypercharges to give masses to matter and
gauge fields:

H1 =
(
H0

1
H−

1

)
(Y = −1) , H2 =

(
H+

2
H0

2

)
(Y = +1) .

(3)
Because of the SUSY constraints, the structure of the
Higgs potential of the MSSM constructed out of the two
doublets (3) takes on the form [14]:

V = m2
1 |H1|2 +m2

2 |H2|2 −m2
12

(
εij H

i
1H

j
2 + h.c.

)
+

1
8
(g2 + g′2)

(|H1|2 − |H2|2
)2

+
1
2
g2 |H†

1 H2|2 , (4)

where m2
1,m

2
2,m

2
12 are soft SUSY-breaking masses and

g, g′ are the SU(2)L × U(1)Y gauge coupling constants.
1 In the MSSM there are several additional, more exotic, 2-

body decays of the top quark and also a host of 3-body final
states worth studying, see [13]. Our SUSY notation is as in this
reference
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After spontaneous symmetry breaking (SSB), the physi-
cal content of the Higgs sector of the MSSM consists of one
CP-odd (“pseudoscalar”) neutral Higgs, A0, two CP-even
neutral Higgs bosons, h0, H0, and a charged Higgs boson,
H±. Upon due account of the physical gauge sector, the
masses of the various spinless bosons are determined in
terms of just three parameters, which can be chosen to be
the two vacuum expectation values (VEV’s) < H0

2 >= v2,
< H0

1 >= v1, giving masses to the top and bottom quarks
respectively, and one physical Higgs mass. However, due
to the SSB constraint

v2 ≡ v2
1 +v2

2 = 2M2
W /g2 = 2−3/2G−1

F ' (174GeV )2 , (5)

where GF is Fermi’s constant in µ-decay, in the end only
two parameters suffice to completely specify the MSSM
Higgs masses at the tree-level. Moreover, since we are in-
terested in the decay process t → H+ b, it is natural to
take MH± as the physical input mass rather than MA0 .
As the second independent parameter, one can take the
ratio of the two VEV’s: tanβ = v2/v1. Then, in lowest
order, we have the relations [14]

M2
A0 = M2

H± −M2
W ,

M2
H0,h0 =

1
2

(
M2
A0 +M2

Z

±
√

(M2
A0 +M2

Z)2 − 4M2
ZM

2
A0 cos2 2β

)
,(6)

where Mh0 < MH0 . It is well-known that these formulas
become modified at one-loop [15]. In our case, once MH±

is fixed, the other Higgs masses enter the decay rate of t→
H+ b only through virtual corrections. Notice that if we
take MA0 as an input, then the approximate LEP bound
MA0 > 60GeV [16] on the CP-odd state translates into
the lower limit MH± > 100GeV which is not significantly
modified by the radiative corrections [15].

The charged Higgs can be, as noted above, very sensi-
tive to bottom-quark interactions. Specifically, after ex-
pressing the two-doublet Higgs fields of the MSSM in
terms of the corresponding mass-eigenstates, the inter-
action Lagrangian describing the t bH+-vertex reads as
follows [14]:

LHbt =
g Vtb√
2MW

H− b̄ [mt cotβ PR +mb tanβ PL] t+ h.c. ,

(7)
where Vtb is the corresponding Cabibbo-Kobayashi-
Maskawa matrix element, and PL,R = (1/2)(1 ∓ γ5) are
the projection operators on LH and RH fermions.

In the “α-parametrization”, where the input parame-
ters are (α,MW ,MZ ,MH ,mf , ...), the coupling g on (7)
stands for e/sW , where α ≡ αe.m.(q2 = 0) = e2/4π and
s2W ≡ 1 − c2W ≡ 1 − M2

W /M2
Z . An alternative frame-

work (“GF -parametrization”) based on the set of inputs
(GF ,MW ,MZ ,MH ,mf , ...) is also useful, especially at
higher orders in perturbation theory (Cf. Sect. 3). At the
tree-level, the relation between the two parametrizations
is trivial:

GF√
2

=
πα

2M2
W s2W

. (8)

From the Lagrangian (7), the tree-level width of the un-
conventional top quark decay into a charged Higgs boson
in the GF -parametrization reads:

Γ (0)(t→ H+ b) =
(

GF

8π
√

2

) |Vtb|2
mt

λ1/2(1,
m2
b

m2
t

,
M2
H±

m2
t

)

× [(m2
t +m2

b −M2
H±)(m2

t cot2 β

+m2
b tan2 β) + 4m2

tm
2
b ], (9)

where

λ1/2(1, x2, y2) ≡
√

[1− (x+ y)2][1− (x− y)2] . (10)

It is useful to compare (9) with the tree-level width of the
canonical top quark decay in the SM:

Γ (0)(t→W+ b) =
(

GF

8π
√

2

) |Vtb|2
mt

λ1/2(1,
m2
b

m2
t

,
M2
W

m2
t

)

× [M2
W (m2

t +m2
b)

+(m2
t −m2

b)
2 − 2M4

W ] . (11)

The ratio between the two partial widths becomes more
transparent upon neglecting the kinematical bottom mass
contributions, while retaining all the Yukawa coupling ef-
fects:

Γ (0)(t→ H+ b)
Γ (0)(t→W+ b)

=

(
1− M2

H+

m2
t

)2 [
m2
b

m2
t

tan2 β + cot2 β
]

(
1− M2

W

m2
t

)2 (
1 + 2M

2
W

m2
t

) .

(12)
We see from it that if MH± is not much heavier than
MW , then there are two regimes, namely a low and a
high tanβ regime, where the decay rate of the uncon-
ventional top quark decay becomes sizeable as compared
to the conventional decay. They can be defined approx-
imately as follows: i) Low tanβ regime: tanβ < 2, and
ii) High tanβ regime: tanβ ≥ mt/mb ' 35. The critical
regime of the decay t → H+ b occurs at the intermediate
value tanβ =

√
mt/mb ∼ 6, where the partial width has

a pronounced dip. Around this value, the canonical decay
t→W+ b is dominant over the charged Higgs decay; more
specifically, for 3 <∼ tanβ <∼ 15 the decay rate of the mode
t → H+ b is basically irrelevant as compared to the stan-
dard mode: BR(t → H+ b) < 10%. Therefore, a detailed
study of the quantum effects within that interval is of no
practical interest.

Even though the approximate perturbative regime for
tanβ extends over the wide range

0.5 <∼ tanβ <∼ 70 , (13)

we shall emphasize the results obtained in the phenomeno-
logically interesting high tanβ region (typically tanβ >∼
30). As for the low tanβ range, while BR(t→ H+ b) can
also be sizeable it turns out that the corresponding quan-
tum effects are generally much smaller than in the high
tanβ case (Cf. Sect. 5).

Experimentally, and despite naive expectations, the
non-SM branching ratio BR(t→ H+ b) is not as severely
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constrained as apparently dictated by the existing mea-
surements of the standard branching ratio at the Teva-
tron. To assess this fact, notice that one usually assumes
that the sole source of top quarks in pp̄ collisions is the
standard Drell-Yan pair production mechanism q q̄ → t t̄.
Now, the observed cross-section is equal to the Drell-Yan
production cross-section convoluted over the parton distri-
butions times the squared branching ratio. Schematically,

σobs. =
∫
dq dq̄ σ(q q̄ → t t̄) × |BR(t→W+ b)|2 . (14)

However, in the framework of the MSSM, we rather expect
a generalization of this formula in the following way:

σobs. =
∫
dq dq̄ σ(q q̄ → t t̄) × |BR(t→W+ b)|2

+
∫
dq dq̄ σ(q q̄ → g̃ ¯̃g)

×|BR(g̃ → t ¯̃t1)|2 × |BR(t→W+ b)|2

+
∫
dq dq̄ σ(q q̄ → b̃a

¯̃
ba) (15)

×|BR(b̃a → t χ−1 )|2 × |BR(t→W+ b)|2 + ... ,

From (15) we see that if there are alternative (non-SM)
sources of top quarks subsequently decaying into the SM
final state, W+ b, one cannot rigorously place any strin-
gent upper bound on BR(t → W+ b) from the present
data. The only restriction being an approximate lower
bound BR(t → W+ b) >∼ 40 − 50% in order to guar-
antee the purported standard top quark events at the
Tevatron [1]. Thus, from these considerations it is not ex-
cluded that the non-SM branching ratio of the top quark,
BR(t→“new”), could be as big as the SM one, i.e. ∼ 50%.

We stress that at present one cannot exclude (15) since
the observed t → W+ b final state involves missing en-
ergy, as it is also the case for the decays comprising super-
symmetric particles. A first step to improve this situation
would be to compute some of the additional top quark
production cross-sections in the MSSM under given hy-
potheses on the SUSY spectrum. For instance, the inclu-
sion of the q q̄ → g̃ ¯̃g mechanism followed by the g̃ → t ¯̃t1
decay has been considered in [17], where it was claimed
that BR(t → t̃1 χ

0
1) ' 50%. By the same token, one can-

not place any compelling restriction on BR(t → H+ b)
from the present FNAL data. In particular, if tanβ is
large and there exists a relatively light chargino with a
non-negligible higgsino component, the third mechanism
suggested in (15), namely q q̄ → b̃a

¯̃
ba followed by b̃a →

t χ−1 , could also be a rather efficient non-SM source of top
quarks. Moreover, if 100GeV <∼ MH±

<∼ 150GeV , then a
sizeable portion of the top quarks will decay into a charged
Higgs.

Furthermore, it is worth mentioning that the decay
mode t → H+ b has a distinctive signature which could
greatly help in its detection, viz. the fact that at large
tanβ the emergent charged Higgs would seldom decay into
a pair of quark jets, but rather into a τ -lepton and asso-

ciated neutrino. This follows from inspecting the ratio

Γ (H+ → τ+ντ )
Γ (H+ → cs̄)

=
1
3

(
mτ

mc

)2 tan2 β

(m2
s/m

2
c) tan2 β + cot2 β

→ 1
3

(
mτ

ms

)2

> 10

(for tanβ >
√
mc/ms

>∼ 2) , (16)

where we see that the identification of the charged Higgs
decay of the top quark could be a matter of measuring
a departure from the universality prediction for all lep-
ton channels. In practice, τ -identification is possible at the
Tevatron; and the feasibility of tagging the excess of events
with one isolated τ -lepton as compared to events with an
additional lepton has also been substantiated by studies
of the LHC collaborations. The experimental signature for
tt̄→ H+H− b b̄ would differ from tt̄→ W+W− b b̄ by an
excess of final states with two τ -leptons and two b-quarks
and large missing transverse energy. A study in this di-
rection by the CDF collaboration at the Tevatron [18] has
been able to exclude a large portion of the (tanβ,MH±)-
plane characterized by tanβ >∼ 60 and MH± below a given
value which varies with tanβ. Thus, we will for definite-
ness optimize our results in the safe, and phenomenologi-
cally interesting, high tanβ segment

30 ≤ tanβ ≤ 60 . (17)

In short, there are good prospects for detecting the decay
t→ H+ b, if it is kinematically accessible. Unfortunately,
on the sole basis of computing tree-level effects we cannot
find out whether the charged Higgs emerging from that de-
cay is supersymmetric or not. Quantum effects, however,
can.

3 Renormalization of the t bH+-vertex

Proceeding closely in parallel with our supersymmetric
approach to the conventional decay t→ W+ b [10,11], we
shall address the calculation of the one-loop corrections
to the partial width of t → H+ b in the MSSM within
the context of the on-shell renormalization framework [19].
Again we may use both the α or the GF parametrizations.
At one-loop order, we shall call the former the “α-scheme”
and the latter the “GF -scheme”. Beyond lowest order, the
relation between the two on-shell schemes is no longer
given by (8) but by

GF√
2

=
πα

2M2
W s2W

(1 +∆rMSSM ) , (18)

where ∆rMSSM is the prediction of the parameter ∆r [19]
in the MSSM2.

Let us sketch the renormalization procedure affecting
the parameters and fields related to the t bH+-vertex,
whose interaction Lagrangian was given on (7). In gen-
eral, the renormalized MSSM Lagrangian L → L + δL is

2 A dedicated study of ∆rMSSM has been presented in [20]
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obtained following a similar pattern as in the SM, i.e. by
attaching multiplicative renormalization constants to each
free parameter and field: gi → (1+δgi/gi)gi, Φi → Z

1/2
Φi

Φi.
In our case, in the line of [10,11] we shall use minimal
field renormalization, i.e. one renormalization constant per
gauge symmetry multiplet [19]. Specifically, for the quark
fields under consideration, we have

(
tL
bL

)
→ Z

1/2
L

(
tL
bL

)
→
(

(ZtL)1/2tL
(ZbL)1/2bL

)
,

bR → (ZbR)
1/2

bR , tR → (ZtR)1/2tR . (19)

Here Zi = 1 + δZi are the doublet (ZL) and singlet (Zt,bR )
field renormalization constants for the top and bottom
quarks. Although in the minimal field renormalization
scheme there is only one fundamental constant, ZL, per
matter doublet, it is useful to work with ZbL = ZL and ZtL,
where the latter differs from the former by a finite renor-
malization effect [19]. To fix all these constants one starts
from the usual on-shell mass renormalization condition for
fermions, f , together with the “residue = 1” condition on
the renormalized propagator. These are completely stan-
dard procedures, and in this way one obtains 3

δmf

mf
= −

[
Σf
L(m2

f ) +Σf
R(m2

f )
2

+Σf
S(m2

f )

]
, (20)

and

δZfL,R = Σf
L,R(m2

f )

+ m2
f [Σ

f ′
L (m2

f ) +Σf ′
R (m2

f ) + 2Σf ′
S (m2

f )] , (21)

where we have decomposed the fermion self-energy accord-
ing to

Σf (p) = Σf
L(p2) 6 pPL+Σf

R(p2) 6 pPR+mf Σ
f
S(p2) , (22)

and used the notation Σ′(p) ≡ ∂Σ(p)/∂p2.
One also assigns doublet renormalization constants to

the two Higgs doublets (3) of the MSSM:(
H0

1
H−

1

)
→ Z

1/2
H1

(
H0

1
H−

1

)
,

(
H+

2
H0

2

)
→ Z

1/2
H2

(
H+

2
H0

2

)
.

(23)
The renormalization of the gauge sector is related to that
of the Higgs sector. In particular, we point out the pres-
ence in our decay process t → H+ b of the (one-loop in-
duced) mixing term H± −W± for the bare fields, which
must be renormalized away for the physical fields H± and
W±. In order to generate the corresponding Lagrangian
counterterm we write

W±
µ → (ZW2 )

1/2
W±
µ ± i

δZHW
MW

∂µH
± . (24)

3 The sign convention for the self-energy functions is as in
[10], which is opposite to that in [19]. Moreover, we understand
that in all formulas defining counterterms we are taking the
real part of the corresponding functions

Therefore, from

LWbt =
g√
2
W−
µ b̄ γµ PL t+ h.c. (25)

we obtain

δLHW = −i δZHW g√
2MW

∂µH
− b̄ γµ PL t+ h.c.

→ δZHW
g√

2MW

H− [mt b̄ PR t−mb b̄ PL t
]

+h.c. , (26)

and in this way it adopts the form of the original vertex
(7). In the above expression (24), ZW2 = 1 + δZW2 is the
usual SU(2)L gauge triplet renormalization constant given
by the formula

δZW2 =
Σγ(k2)
k2

∣∣∣∣
k2=0

− 2
cW
sW

ΣγZ(0)
M2
Z

+
c2W
s2W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
, (27)

and

δM2
W = −ΣW (k2 = M2

W ) , δM2
Z = −ΣZ(k2 = M2

Z) ,
(28)

are the gauge boson mass counterterms enforced by the
usual on-shell mass renormalization conditions. Further-
more, δZHW on (24)-(26) is a dimensionless constant asso-
ciated to the wave-function renormalization mixing among
the bare H± and W± fields. Its relation with the doublet
renormalization constants, ZHi = 1 + δZHi , is the follow-
ing :

δZHW = sinβ cosβ
[
1
2

(δZH2 − δZH1) +
δ tanβ
tanβ

]
, (29)

where δ tanβ is a counterterm associated to the renormal-
ization of tanβ (see below). In practice, the most straight-
forward way to compute δZHW is from the unrenormalized
mixed self-energy ΣHW (k2):

δZHW =
ΣHW (M2

H±)
M2
W

. (30)

For the SU(2)L gauge coupling constant, we have

g → (1 +
δg

g
)g , (31)

where in the α-scheme

δg2

g2 =
δα

α
− c2W
s2W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
. (32)

Let us now outline the renormalization of the Higgs sector
of the MSSM [15]. Depending on the particular problem at
hand, the renormalization procedure may adopt the CP-
odd state A0 as the basic field on which to set the mass and
wave-function renormalization conditions. In the present
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work, however, since the external Higgs particle is charged,
we rather take H± as the basic field. Its mass and field
renormalization constants are defined by

M2
H± →M2

H± + δM2
H± , H± → Z

1/2
H±H

± . (33)

The charged Higgs field renormalization constant, ZH± =
1+ δZH± , is of course related to the fundamental doublet
renormalization constants introduced on (23), as follows:

δZH± = sin2 β δZH1 + cos2 β δZH2 . (34)

The structure of the renormalized self-energy is

Σ̂H±(k2) = ΣH±(k2)+δM2
H±− (k2−M2

H±) δZH± , (35)

where ΣH±(k2) is the corresponding unrenormalized self-
energy.

In order to determine the counterterms, we impose the
following renormalization conditions:

i) On-shell mass renormalization condition:

Σ̂H±(M2
H±) = 0 , (36)

ii) “Residue = 1” condition for the renormalized prop-
agator at the pole mass:

∂Σ̂H±(k2)
∂k2

∣∣∣∣∣
k2=M2

H±

≡ Σ̂′
H±(M2

H±) = 0 . (37)

From these conditions one derives

δM2
H± = −ΣH±(M2

H±) ,

δZH± = +Σ′
H±(M2

H±) . (38)

Consider next the renormalization of the Higgs potential
in the MSSM, (4) [15]. After expanding the neutral com-
ponents H0

1 and H0
2 around their VEV’s v1 and v2, the

one-point functions of the resulting CP-even fields are re-
quired to vanish, i.e. the tadpole counterterms are con-
strained to exactly cancel the tadpole diagrams, so that
the renormalized tadpoles are zero and the quantities v1,2
remain as the VEV’s of the renormalized Higgs potential.
Notwithstanding, at this stage a prescription to renormal-
ize tanβ = v2/v1,

tanβ → tanβ + δ tanβ , (39)

is still called for. There are many possible strategies. The
ambiguity is related to the fact that this parameter is just
a Lagrangian parameter and as such it is not a physical
observable. Its value beyond the tree-level is renormaliza-
tion scheme dependent. (The situation is similar to the
definition of the weak mixing angle θW , or equivalently of
sin2 θW .) However, even within a given scheme, e.g. the on-
shell renormalization scheme, there are some ambiguities
that must be fixed. For example, we may wish to define
tanβ in a process-independent (“universal”) way as the
ratio v2/v1 between the true VEV’s after renormalization
of the Higgs potential [15]. In this case a consistent choice

(i.e. a choice capable of renormalizing away the tadpole
contributions) is to simultaneously shift the VEV’s and
the mass parameters of the Higgs potential, (4),

vi → Z
1/2
Hi

(vi + δvi) ,

m2
i → Z

1
2
Hi

(m2
i + δm2

i ) ,

m2
12 → Z

1
2
H1

Z
1
2
H2

(m2
12 + δm2

12) , (40)

(i = 1, 2) in such a way that δv1/v1 = δv2/v2. This
choice generates the following counterterm for tanβ in
that scheme:

δ tanβ
tanβ

=
1
2

(δZH2 − δZH1) . (41)

Nevertheless, this procedure looks very formal and one
may eventually like to fix the on-shell renormalization con-
dition on tanβ in a more physical way, i.e. by relating it to
some concrete physical observable, so that it is the mea-
sured value of this observable that is taken as an input
rather than the VEV’s of the Higgs potential. Following
this practical attitude, we choose as a physical observable
the decay width of the charged Higgs boson into τ -lepton
and associated neutrino: H+ → τ+ντ . As it has been ar-
gued in Sect. 2, this should be a good choice, because: i)
When t → H+ b is allowed, the decay H+ → τ+ντ is the
dominant decay of H± already for tanβ >∼ 2; and ii) At
high tanβ, the charged Higgs decay of the top quark can
have a sizeable branching ratio.

The interaction Lagrangian describing the decay
H+ → τ+ντ is directly proportional to tanβ,

LHτν =
gmτ tanβ√

2MW

H− τ̄ PL ντ + h.c. , (42)

and the relevant decay width is proportional to tan2 β.
Whether in the α-scheme or in the GF -scheme, it reads:

Γ (H+ → τ+ντ ) =
αm2

τ+ MH+

8M2
W s2W

tan2 β (43)

=
GFm

2
τ+ MH+

4π
√

2
tan2 β (1−∆rMSSM ),

where we have used the relation (18). By measuring this
decay width one obtains a physical definition of tanβ
which can be used beyond the tree-level.

Insofar as the determination of the counterterm δ tanβ
in our scheme, it can be fixed unambiguously from our
Lagrangian definition of tanβ on (42) and the renormal-
ization procedure described above. It is straightforward to
find:

δ tanβ
tanβ

=
δv

v
− 1

2
δZH± + cotβ δZHW +∆τ . (44)

Notice the appearance of the vacuum counterterm

δv

v
=

1
2
δv2

v2 =
1
2
δM2

W

M2
W

− 1
2
δg2

g2 , (45)
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which is associated to v2 = v2
1 + v2

2 , and whose structure
is fixed from (5). The last term on (44),

∆τ = −δmτ

mτ
− 1

2
δZντL − 1

2
δZτR − Fτ , (46)

is the (finite) process-dependent part of the counterterm.
Here δmτ/mτ , δZντL and δZτR are obtained from (20) and
(21) (with mντ = 0 ); they represent the contribution
from the mass and wave-function renormalization of the
(ντ , τ)-doublet, including the finite renormalization of the
neutrino leg. Finally, Fτ on (46) is the form factor describ-
ing the vertex corrections to the amplitude ofH+ → τ+ντ .

On comparing (41) and (44) we see that the first def-
inition of tanβ appears as though it is free from process-
dependent contributions. In practice, however, process-de-
pendent terms are inevitable, irrespective of the definition
of tanβ. In fact, the definition of tanβ where δv1/v1 =
δv2/v2 will also develop process-dependent contributions,
as can be seen by trying to relate the “universal” value
of tanβ in that scheme with a physical quantity directly
read off some physical observable. For instance, if MA0 is
heavy enough, one may define tanβ as follows:

Γ (A0 → b b̄)
Γ (A0 → t t̄)

= tan4 β
m2
b

m2
t

(
1− 4m2

t

M2
A0

)−1/2

×
[
1 + 4

(
δv2
v2

− δv1
v1

)

+ 2
(
δmb

mb
+

1
2
δZbL +

1
2
δZbR −

δmt

mt

− 1
2
δZtL −

1
2
δZtR

)
+ δV

]
, (47)

where we have neglected m2
b � M2

A0 , and δV stands for
the vertex corrections to the decay processes A0 → b b̄ and
A0 → t t̄. Since the sum of the mass and wave-function
renormalization terms along with the vertex corrections
is UV-finite, one can consistently choose δv1/v1 = δv2/v2
leading to (41). Hence, deriving tanβ from (47) unavoid-
ably incorporates also some process-dependent contribu-
tions.

Any definition of tanβ is in principle as good as any
other; and in spite of the fact that the corrections them-
selves may show some dependence on the choice of the
particular definition, the physical observables should not
depend at all on that choice. However, it can be a prac-
tical matter what definition to use in a given situation.
For example, our definition of tanβ given on (44) should
be most adequate for MH± < mt − mb and large tanβ,
since then H+ → τ+ ντ is the dominant decay of H+,
whereas the definition based on (47) requires also a large
value of tanβ (to avoid an impractical suppression of the
b b̄ mode); moreover, in order to be operative, it also re-
quires a much heavier charged Higgs boson, since MH± '
MA0 > 2mt when the decay A→ tt̄ is kinematically open
in the MSSM. (Use of light quark final states would, of
course, be extremely difficult from the practical point of
view.)

t
p

b
p'

H
+

Fig. 1. The lowest-order Feynman diagram for the charged
Higgs decay of the top quark

Within our context, we use (44) for δ tanβ/ tanβ in
order to compute the one-loop corrections to our decay
t→ H+ b. Putting all the pieces together, the counterterm
Lagrangian for the vertex t bH+ follows right away from
the bare Lagrangian (7) after re-expressing everything in
terms of renormalized parameters and fields in the on-shell
scheme. It takes on the form :

δLHbt =
g√

2MW

H− b̄ [δCR mt cotβ PR

+δCL mb tanβ PL] t+ h.c. , (48)

with

δCR =
δmt

mt
− δv

v
+

1
2
δZH+ +

1
2
δZbL +

1
2
δZtR

− δ tanβ
tanβ

+ δZHW tanβ ,

δCL =
δmb

mb
− δv

v
+

1
2
δZH+ +

1
2
δZtL +

1
2
δZbR

+
δ tanβ
tanβ

− δZHW cotβ , (49)

and where we have set Vtb = 1 (Vtb = 0.999 within ±0.1%,
from unitarity of the CKM-matrix under the assumption
of three generations).

4 One-loop corrected Γ (t→ H+ b)
in the MSSM

As stated in Sect. 2, the study of the decay t → H+ b is
worthwhile in the small (tanβ < 2), and most conspic-
uously in the high (tanβ ≥ 30) tanβ region, where the
branching ratio can be comparable to the one of the stan-
dard decay t→W+ b. These are, therefore, the regions on
which we will focus our search for potentially significant
(strong and electroweak like) SUSY quantum corrections
to t→ H+ b.

In the following we will describe the relevant elec-
troweak one-loop supersymmetric diagrams entering the
amplitude of t → H+ b in the MSSM. At the tree-level,
the only Feynman diagram is the one in Fig. 1. At the
one-loop, we have the diagrams exhibited in Figs. 2–6. The
computation of the one-loop diagrams requires to use the
full structure of the MSSM Lagrangian4.

Specifically, Fig. 2 shows the electroweak SUSY ver-
tices involving squarks, charginos and neutralinos. In all

4 The explicit form of the most relevant pieces of this La-
grangian for our calculation, together with the necessary SUSY
notation, is provided in Sect. 3 of [13] and Sect. 2 of [10]
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b

t

b
∼

a

ψα
0
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+ H

+

(V  )S3

t

t∼a

ψi
−

ψα
0

b

H
+

(V  )S1

b

t

ψα
0

H
+

(V  )S2

∼
bb

∼ta

Fig. 2. Feynman diagrams, up to one-loop order, for the elec-
troweak SUSY vertex corrections to the decay process t →
H+ b. Each one-loop diagram is summed over all possible val-
ues of the mass-eigenstate charginos (Ψ±i ; i = 1, 2), neutralinos
(Ψ0

α ;α = 1, ..., 4), stop and sbottom squarks (b̃a, t̃b ; a, b = 1, 2)
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+
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+
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t

b
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+

t

H
−
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H
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0

t

b

H
+

t

G
−

(V  )H4

H
0
, h

0
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b
b

H
+

A
0

(V  )H5

G
+

t

H
+

t

G
−

(V  )H6

A
0

Fig. 3. Feynman diagrams, up to one-loop order, for the Higgs
and Goldstone boson vertex corrections to the decay process
t→ H+ b

these diagrams a sum over all indices is taken for granted.
The supersymmetric Higgs particles of the MSSM and
Goldstone bosons G±, G0 (in the Feynman gauge) con-
tribute a host of one-loop vertices as well (see Fig. 3). As
for the various self-energies, they will be treated as coun-
terterms to the vertices. Their structure is dictated by
the Lagrangian (48). Thus, Fig. 4 displays the countert-
erms Cb1 − Ct4 generated from the external bottom and

ψi
+

t

b
∼

a

t

(C  )t1

t

ψα
0

t∼a

t

(C  )t2

ψi
−

bb

t∼a

(C  )b1

ψα
0

b

b
∼

a

b

(C  )b2

bb

(C  )b3

H , G- -

t

bb

(C  )b4

b

H , h , A , G0 0 0 0

t t

(C  )t3

b

H , G+ +

tt

(C  )t4

t

H , h , A , G0 0 0 0

Fig. 4. Electroweak self-energy corrections to the top and bot-
tom quark external lines from the various supersymmetric par-
ticles, Higgs and Goldstone bosons

H+H+

t

b

(C  )H1

H+ H+

~
a       at  , b

~

(C  )H3

ψα
0

ψi
−

H+H+

(C  )H4

H+H+

~
at

~

bb

(C  )H2

Fig. 5. Corrections to the charged Higgs self-energy from the
various supersymmetric particles and matter fermions. Only
the third quark-squark generation is illustrated
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ψα
0

ψi
−

Wµ
+

H+

(C  )M3

Wµ
+

H+

~
at

~

bb

(C  )M2

Wµ
+

H+

t

b

(C  )M1

Fig. 6. Corrections to the mixedW+−H+ self-energy from the
various supersymmetric particles and matter fermions. Only
the third quark-squark generation is illustrated

top quark lines; they include contributions from super-
symmetric particles, Higgs bosons and Goldstone bosons.
Similarly, Fig. 5 contains the counterterms CH1−CH4 as-
sociated to the self-energy of the external charged Higgs
boson. A variant of the latter contribution is the mixed
W+−H+ self-energy counterterms CM1−CM3 shown in
Fig. 6.

Although we have displayed only the process depen-
dent diagrams, the full analysis should also include the
SUSY and Higgs/Goldstone boson contributions to the
various universal vacuum polarization effects comprised
in our counterterms. However, the calculation of all these
pieces has already been discussed in detail long ago in
the literature [21] and thus the lengthy formulae account-
ing for these results will not be explicitly quoted here.
Their contribution is not tanβ-enhanced, but since we
wish to compute the full supersymmetric contribution in
the relevant regions of the MSSM parameter space, those
effects will be included in our numerical code. Finally,
the smaller –though numerically overwhelming – subset
of strong supersymmetric one-loop graphs are displayed
in Fig. 1 of [9]. We will use the formulae from the lat-
ter reference in the present analysis to produce the total
(electroweak+strong) SUSY correction to our process.

Next let us report on the contributions from the var-
ious vertex diagrams and counterterms in the on-shell
renormalization scheme. The generic structure of any re-
normalized vertex function, Λ, in Figs. 2–3 is composed of
two form factors FL, FR plus the counterterms. Therefore,
on making use of the formulae of Sect. 3, one immediately
finds:

Λ =
i g√

2MW

[mt cotβ (1 + ΛR)PR

+mb tanβ (1 + ΛL)PL] , (50)

where

ΛR = FR +
δmt

mt
+

1
2
δZbL +

1
2
δZtR −∆τ

− δv2

v2 + δZH+ + (tanβ − cotβ) δZHW ,

ΛL = FL +
δmb

mb
+

1
2
δZtL +

1
2
δZbR +∆τ . (51)

In the following the analytical contributions to the vertex
form factors and counterterms will be specified diagram
by diagram.

4.1 SUSY vertex diagrams

Following the labelling of Feynman graphs in Fig. 2 we
write down the terms coming from virtual SUSY particles.
– Diagram (VS1): We introduce the shorthands5

A± ≡ A
(t)
±ai and A

(0)
± ≡ A

(t)
±aα , (52)

and define the combinations (omitting indices also for
QL
αi, Q

R
αi)

A(1) = cosβA∗
+Q

LA
(0)
− , E(1) = cosβA∗

−Q
LA

(0)
− ,

B(1) = cosβA∗
+Q

LA
(0)
+ , F (1) = cosβA∗

−Q
LA

(0)
+ ,

C(1) = sinβA∗
+Q

RA
(0)
− , G(1) = sinβA∗

−Q
RA

(0)
− ,

D(1) = sinβA∗
+Q

RA
(0)
+ , H(1) = sinβA∗

−Q
RA

(0)
+ .

(53)

The contribution from diagram (VS1) to the form fac-
tors FL and FR is then

FL = ML

[
H(1)C̃0+

+mb

(
mtA

(1) +M0
αB

(1) +mbH
(1) +MiD

(1)
)

×C12

+mt

(
mtH

(1) +M0
αG

(1) +mbA
(1) +MiE

(1)
)

× (C11 − C12)

+
(
mtmbA

(1) +mtMiE
(1) +M0

αmbB
(1)

+MiM
0
αF

(1)
)
C0

]
,

FR = MR

[
A(1)C̃0+

+mb

(
mtH

(1) +M0
αG

(1) +mbA
(1) +MiE

(1)
)

×C12

+mt

(
mtA

(1) +M0
αB

(1) +mbH
(1) +MiD

(1)
)

× (C11 − C12)

+
(
mtmbH

(1) +mtMiD
(1) +M0

αmbG
(1)

+MiM
0
αC

(1)
)
C0

]
, (54)

where the overall coefficients ML and MR are the fol-
lowing:

ML = − ig2MW

mb tanβ
MR = − ig2MW

mt cotβ
. (55)

5 Again we refer the reader to [13] for notation
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The notation for the various 2 and 3-point functions is
as in [10]. On (54) they must be evaluated with argu-
ments:

C∗ = C∗
(
p, p′,mt̃a

,M0
α,Mi

)
. (56)

– Diagram (VS2): For this diagram –which in contrast to
the others is finite– we introduce the shorthands

A
(b)
± ≡ A

(b)
±bα and A

(t)
± ≡ A

(t)
±aα , (57)

to define the products of coupling matrices

A(2) = GbaA
(b)∗
+ A

(t)
− , C(2) = GbaA

(b)∗
− A

(t)
− ,

B(2) = GbaA
(b)∗
+ A

(t)
+ , D(2) = GbaA

(b)∗
− A

(t)
+ .(58)

The contribution to the form factors FL and FR from
this diagram is

FL = − ML

2MW

[
mbB

(2)C12 +mtC
(2) (C11 − C12)

−M0
αD

(2)C0

]
,

FR = − MR

2MW

[
mbC

(2)C12 +mtB
(2) (C11 − C12)

−M0
αA

(2)C0

]
, (59)

the coefficients ML, MR being those of (55) and the
scalar 3-point functions now evaluated with arguments

C∗ = C∗
(
p, p′,M0

α,mt̃a
,mb̃b

)
. (60)

– Diagram (VS3): For this diagram we will need

A± ≡ A
(b)
±ai and A

(0)
± ≡ A

(b)
±aα , (61)

and again omitting indices we shall use

A(3) = cosβA(0)∗
+ QLA− , E(3) = cosβA(0)∗

− QLA− ,

B(3) = cosβA(0)∗
+ QLA+ , F (3) = cosβA(0)∗

− QLA+ ,

C(3) = sinβA(0)∗
+ QRA− , G(3) = sinβA(0)∗

− QRA− ,

D(3) = sinβA(0)∗
+ QRA+ , H(3) = sinβA(0)∗

− QRA+ .

(62)

From these definitions the contribution of diagram
(VS3) to the form factors can be obtained by perform-
ing the following changes in that of diagram (VS1),
(54):
– Everywhere on (54) and (56) replace Mi ↔ M0

α

and mt̃a
↔ mb̃a

.
– Replace on (54) couplings from (53) with those of

(62).
– Include a global minus sign.

4.2 Higgs vertex diagrams

Now we consider contributions arising from the exchange
of virtual Higgs particles and Goldstone bosons in the

Feynman gauge, as shown in Fig. 3. We follow the vertex
formula for the form factors by the value of the overall
coefficient N and by the arguments of the corresponding
3-point functions.

– Diagram (VH1):

FL = N [m2
b(C12 − C0) +m2

t cot2β(C11 − C12)] ,
FR = Nm2

b [C12 − C0 + tan2β(C11 − C12)] ,

N = ∓ ig
2

2

(
1− {M

2
H0 ,M2

h0}
2M2

W

)

× {cosα, sinα}
cosβ

{cos(β − α), sin(β − α)} ,
C∗ = C∗ (p, p′,mb,MH± , {MH0 ,Mh0}) .

– Diagram (VH2):

FL = N cotβ[m2
t (C11 − C12) +m2

b(C0 − C12)] ,
FR = Nm2

b tanβ(2C12 − C11 − C0) ,

N =
ig2

4
{cosα, sinα}

cosβ
{sin(β − α), cos(β − α)}

×
(
M2
H±

M2
W

− {M
2
H0 ,M2

h0}
M2
W

)
,

C∗ = C∗ (p, p′,mb,MW , {MH0 ,Mh0}) .

– Diagram (VH3):

FL = Nm2
t [cot2βC12 + C11 − C12 − C0] ,

FR = N [m2
b tan2βC12 +m2

t (C11 − C12 − C0)] ,

N = − ig
2

2
{sinα, cosα}

sinβ
{cos(β − α), sin(β − α)}

×
(

1− {M
2
H0 ,M2

h0}
2M2

W

)
,

C∗ = C∗ (p, p′,mt, {MH0 ,Mh0},MH±) .

– Diagram (VH4):

FL = Nm2
t (2C12 − C11 + C0) cotβ ,

FR = N [−m2
bC12 +m2

t (C11 − C12 − C0)] tanβ ,

N = ∓ ig
2

4
{sinα, cosα}

sinβ
{sin(β − α), cos(β − α)}

×
(
M2
H±

M2
W

− {M
2
H0 ,M2

h0}
M2
W

)
,

C∗ = C∗ (p, p′,mt, {MH0 ,Mh0},MW ) .

– Diagram (VH5):

FL = N [m2
b(C12 + C0) +m2

t (C11 − C12)] ,
FR = Nm2

b tan2β(C11 + C0) ,

N = − ig
2

4

(
M2
H±

M2
W

− M2
A0

M2
W

)
,

C∗ = C∗ (p, p′,mb,MW ,MA0) .
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– Diagram (VH6):

FL = Nm2
t cot2β(C11 + C0) ,

FR = N [m2
bC12 +m2

t (C11 − C12 + C0)] ,

N = − ig
2

4

(
M2
H±

M2
W

− M2
A0

M2
W

)
,

C∗ = C∗ (p, p′,mt,MA0 ,MW ) .

– Diagram (VH7):

FL = N [(2m2
bC11 + C̃0

+2(m2
t −m2

b)(C11 − C12)) cot2β
+2m2

b(C11 + 2C0)]m2
t ,

FR = N [(2m2
bC11 + C̃0

+2(m2
t −m2

b)(C11 − C12)) tan2β

+2m2
t (C11 + 2C0)]m2

b ,

N = ± ig2

4M2
W

sinα cosα
sinβ cosβ

,

C∗ = C∗ (p, p′, {MH0 ,Mh0},mt,mb) .

– Diagram (VH8):

FL = Nm2
t cot2β C̃0 ,

FR = Nm2
b tan2β C̃0 ,

N = ∓ ig2

4M2
W

,

C∗ = C∗ (p, p′, {MA0 ,MZ},mt,mb) .

In the equations above, it is understood that the CP-
even mixing angle, α, is renormalized into αeff by the one-
loop Higgs mass relations [15].

As for the SUSY and Higgs contributions to the coun-
terterms, they are much simpler since they just involve 2-
point functions. Thus we shall present the full electroweak
results by adding up the various sparticle and Higgs ef-
fects. In the following formulae, we append labels referring
to the specific diagrams on Figs. 4–6.

4.3 Counterterms

– Counterterms δmf , δZ
f
L , δZ

f
R: For a given down-like

fermion b, and corresponding isospin partner t, the fer-
mionic self-energies receive contributions

Σb
{L,R}(p

2) = Σb
{L,R}(p

2)
∣∣∣
(Cb1)+(Cb2)

= −ig2
[∣∣∣A(t)

±ai
∣∣∣2B1

(
p,Mi,mt̃a

)
+

1
2

∣∣∣A(b)
±aα

∣∣∣2B1
(
p,M0

α,mb̃a

)]
,

mbΣ
b
S(p2) = mbΣ

b
S(p2)

∣∣
(Cb1)+(Cb2)

= ig2
[
MiRe

(
A

(t)∗
+aiA

(t)
−ai
)
B0
(
p,Mi,mt̃a

)

+
1
2
M0
αRe

(
A

(b)∗
−aαA

(b)
+aα

)
×B0

(
p,M0

α,mb̃a

)]
, (63)

from SUSY particles, and

Σb
{L,R}(p

2) = Σb
{L,R}(p

2)
∣∣∣
(Cb3)+(Cb4)

=
g2

2iM2
W

{
m2
{t,b}

× [{cot2β, tan2β}B1(p,mt,MH±)
+B1(p,mt,MW )]

+
m2
b

2 cos2β
[
cos2αB1(p,mb,MH0)

+ sin2αB1(p,mb,Mh0)
+ sin2β B1(p,mb,MA0)

+ cos2β B1(p,mb,MZ)
]}

,

Σb
S(p2) = Σb

S(p2)
∣∣
(Cb3)+(Cb4)

= − g2

2iM2
W

{
m2
t [B0(p,mt,MH±)

−B0(p,mt,MW )]

+
m2
b

2 cos2β
[
cos2αB0(p,mb,MH0)

+ sin2αB0(p,mb,Mh0)
− sin2β B0(p,mb,MA0)
− cos2β B0(p,mb,MZ)

]}
, (64)

from Higgs and Goldstone bosons in the Feynman
gauge. To obtain the corresponding expressions for an
up-like fermion, t, just perform the label substitutions
b ↔ t on (63)-(64); and on (64) replace sinα ↔ cosα
and sinβ ↔ cosβ (which also implies replacing tanβ
↔ cotβ).
Introducing the above expressions into (20)-(21) one
immediately obtains the SUSY contribution to the
counterterms δmf , δZ

f
L,R.

– Counterterm δZH± :

δZH± = δZH± |(CH1)+(CH2)+(CH3)+(CH4)

= Σ′
H±(M2

H±)

= − ig
2NC

M2
W

[
(m2

b tan2β +m2
t cot2β)

× (B1 +M2
H±B

′
1 +m2

bB
′
0)

+ 2m2
bm

2
tB

′
0
]
(MH± ,mb,mt)

+
ig2

2M2
W

NC

∑
ab

|Gba|2B′
0(MH± ,mb̃b

,mt̃a
)

− 2ig2
∑
iα

[(∣∣QL
αi

∣∣2 cos2β +
∣∣QR

αi

∣∣2 sin2β
)

× (B1 +M2
H±B

′
1 +M0

α
2
B′

0)

+ 2MiM
0
αRe

(
QL
αiQ

R∗
αi

)
(65)
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× sinβ cosβB′
0

]
(MH± ,M

0
α,Mi) .

Notice that diagram (CH3) gives a vanishing contribu-
tion to δZH± .

– Counterterm δZHW :

δZHW = δZHW |(CM1)+(CM2)+(CM3) =
ΣHW (M2

H±)
M2
W

= − ig
2NC

M2
W

[
m2
b tanβ(B0 +B1)

+m2
t cotβB1

]
(MH± ,mb,mt)

+
ig2NC

2M2
W

∑
ab

GbaR
(t)
1aR

(b)∗
1b [2B1

+B0] (MH± ,mb̃b
,mt̃a

)

+
2ig2

MW

∑
iα

[
M0
α

(
cosβ QL∗

αiC
L
αi

+ sinβ QR∗
αi C

R
αi

)
(B0 +B1)

+ Mi

(
sinβ QR∗

αi C
L
αi

+ cosβ QL∗
αiC

R
αi

)
B1
]
(MH± ,M

0
α,Mi) . (66)

Finally, the evaluation of ∆τ on (46) yields similar
bulky analytical formulae, which follow after computing
diagrams akin to those in Figs. 2–6 for the MSSM cor-
rections to H+ → τ+ ντ . We refrain from quoting them
explicitly here. The numerical effect, though, will be ex-
plicitly given in Sect. 5.

We are now ready to furnish the corrected width of
t → H+ b in the MSSM. It just follows after computing
the interference between the tree-level amplitude and the
one-loop amplitude. It is convenient to express the result
as a relative correction with respect to the tree-level width
both in the α-scheme and in the GF -scheme. In the former
we obtain the relative MSSM correction

δMSSM
α =

Γ − Γ
(0)
α

Γ
(0)
α

=
NL

D
[2Re(ΛL)] +

NR

D
[2Re(ΛR)]

+
NLR

D
[2Re(ΛL + ΛR)] , (67)

where the corresponding lowest-order width is

Γ (0)
α =

(
α

s2W

)
D

16M2
W mt

λ1/2(1,
m2
b

m2
t

,
M2
H±

m2
t

) , (68)

with

D = (m2
t +m2

b −M2
H±) (m2

t cot2 β +m2
b tan2 β)

+4m2
tm

2
b ,

NL = (m2
t +m2

b −M2
H±)m2

b tan2 β ,

NR = (m2
t +m2

b −M2
H±)m2

t cot2 β ,

NLR = 2m2
tm

2
b . (69)

From these equations it is obvious that at low tanβ the
relevant quantum effects basically come from the contri-
butions to the form factor ΛR whereas at high tanβ they
come from ΛL.

Using (18) we find that the relative MSSM correction
in the GF -parametrization reads

δMSSM
GF =

Γ − Γ
(0)
GF

Γ
(0)
GF

= δMSSM
α −∆rMSSM , (70)

where the tree-level width in the GF -scheme, Γ (0)
GF

, is given
by (9) and is related to (68) through

Γ (0)
α = Γ

(0)
GF

(1−∆rMSSM ) . (71)

5 Numerical analysis and discussion

Quantum effects should be able to discriminate whether
the charged Higgs emerging from the decay t → H+ b is
supersymmetric or not, for the MSSM provides a well de-
fined prediction of the size of these effects for given values
of the sparticle masses. Some work on radiative corrections
to the decay width of t → H+ b has already appeared in
the literature. In particular, the conventional QCD cor-
rections have been evaluated [8] and found to significantly
reduce the partial width. The SUSY-QCD corrections are
also substantial and the virtual effects mediated by the
Higgs bosons have been addressed in different approxi-
mations 6. However, a comprehensive analysis including
the genuine SUSY effects themselves has never been at-
tempted. Thus, if only for completeness, we are providing
here not only a dedicated treatment of the R-odd con-
tributions mediated by the sparticles of the MSSM, but
also the fully-fledged pay-off of the supersymmetric Higgs
effects.

Before presenting the results of the numerical anal-
ysis, it should be clear that the bulk of the high tanβ
corrections to the decay rate of t→ H+ b in the MSSM is
expected to come from SUSY-QCD. This could already
be foreseen from what is known in SUSY GUT mod-
els [6]; in fact, in this context a non-vanishing sbottom
mixing (which we also assume in our analysis) may lead
to important SUSY-QCD quantum effects on the bottom
mass, mb = mGUT

b +∆mb, where ∆mb is proportional to
M b
LR → −µ tanβ at sufficiently high tanβ. These are fi-

nite threshold effects that one has to include when match-
ing the SM and MSSM renormalization group equations
(RGE) at the effective supersymmetric threshold scale,
TSUSY , above which the RGE evolve according to the
MSSM β-functions in the MS scheme [23]. In our case,
since the bottom mass is an input parameter for the on-
shell scheme, these effects are just fed into the mass coun-
terterm δmb/mb on (51) and contribute to it with opposite
sign (δmb/mb = −∆mb/mb + ...).

Explicitly, when viewed in terms of diagrams of the
electroweak-eigenstate basis, the relevant finite corrections

6 See [9,22] and references therein
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Fig. 7. a Leading SUSY-QCD contributions to δmb/mb in
the electroweak-eigenstate basis; b Leading supersymmetric
Yukawa coupling contributions to δmb/mb in the electroweak-
eigenstate basis

from the bottom mass counterterm are generated by
mixed LR-sbottoms and gluino loops (Cf. Fig. 7a):(

δmb

mb

)
SUSY−QCD

=
2αs(mt)

3π
mg̃M

b
LR I(mb̃1

,mb̃2
,mg̃)

→ −2αs(mt)
3π

mg̃ µ tanβ I(mb̃1
,mb̃2

,mg̃) , (72)

where the last result holds for sufficiently large tanβ and
for µ not too small as compared to Ab. We have introduced
the positive-definite function

I(m1,m2,m3) ≡ 16π2i C0(0, 0,m1,m2,m3)

=
m2

1m
2
2 ln m2

1
m2

2
+m2

2m
2
3 ln m2

2
m2

3
+m2

1m
2
3 ln m2

3
m2

1

(m2
1 −m2

2) (m2
2 −m2

3) (m2
1 −m2

3)
. (73)

In addition, we could also foresee potentially large (finite)
SUSY electroweak effects from δmb/mb. They are induced
by tanβ-enhanced Yukawa couplings of the type (2). Of
course, these effects have already been fully included in the
calculation presented in Sect. 3 that we have performed
in the mass-eigenstate basis, but it is illustrative of the
origin of the leading contributions to pick them up again
directly from the diagrams in the electroweak-eigenstate
basis. In this case, from loops involving mixed LR-stops
and mixed charged higgsinos (Cf. Fig. 7b), one finds:(

δmb

mb

)
SUSY−Yukawa

= −ht hb
16π2

µ

mb
mtM

t
LRI(mt̃1

,mt̃2
, µ)

→ − h2
t

16π2 µ tanβ At I(mt̃1
,mt̃2

, µ) , (74)

where again the last expression holds for large enough
tanβ.

Notice that, at variance with (72), the Yukawa cou-
pling correction (74) becomes zero for At = 0. Although it
is true that for nonvanishing At and vanishing gluino mass
the Yukawa correction could dominate the large tanβ ef-
fects, we point out that the light gluino scenario is nowa-
days essentially dead. Recent LEP analyses do exclude
light gluinos below 6.3GeV [24]. Thus, since intermedi-
ate gluinos were already ruled out, definitely they must
be heavy and most likely of a few hundred GeV . Setting

ht ' 1 at high tanβ, and assuming that there is no large
hierarchy between the sparticle masses, the ratio between
(72) and (74) is given, in good approximation, by 4mg̃/At
times a slowly varying function of the masses of order
1, where the (approximate) proportionality to the gluino
mass reflects the very slow decoupling rate of the latter [9].
In view of the Tevatron bounds on the gluino mass [16],
and since At (as well as Ab) cannot increase arbitrarily,
we expect that the SUSY-QCD effects will be dominant
and even overwhelming for sufficiently heavy gluinos. This
conclusion holds good because we have checked that (74)
does indeed provide the leading electroweak contribution.
However, in contradistinction to the SUSY-QCD case, the
total electroweak output is far more complex. There are
plenty of additional vertex contributions both from the
Higgs sector and from the stop-sbottom/gaugino-higgsino
sector where those Yukawa couplings enter once again.
Overall, these additional effects turn out to be subleading,
and they have been automatically included in our calcula-
tion of Sect. 3 within the framework of the mass-eigenstate
basis.

We may now pass on to the numerical analysis of the
various quantum effects. The results are conveniently cast
in terms of the relative correction with respect to the tree-
level width:

δ =
ΓH − Γ

(0)
H

Γ
(0)
H

≡ Γ (t→ H+ b)− Γ (0)(t→ H+ b)
Γ (0)(t→ H+ b)

. (75)

In what follows we understand that δ defined by (75) is
δα – Cf. (67) – i.e. we shall always give our corrections
with respect to the tree-level width Γ 0

α in the α-scheme.
The corresponding correction with respect to the tree-
level width in the GF -scheme is simply given by (70),
where ∆rMSSM was object of a particular study [20] and
therefore it can be easily incorporated, if necessary. No-
tice, however, that ∆rMSSM is already tightly bound by
the experimental data on MZ = 91.1863± 0.0020GeV at
LEP and the ratio MW /MZ in pp̄, which lead to MW =
80.356 ± 0.125GeV . Therefore, even without doing the
exact theoretical calculation of ∆r within the MSSM, we
already know from

∆r = 1− πα√
2GF

1
M2
W (1−M2

W /M2
Z)

, (76)

that ∆rMSSM must lie in the experimental interval ∆rexp

' 0.040± 0.018.
Now, since the corrections computed in Sect. 3 can

typically be about one order of magnitude larger than
∆rMSSM, the bulk of the quantum effects on t → H+ b
is already comprised in the relative correction (75) in the
α-scheme 7. Furthermore, in the conditions under study,

7 For the standard decay t→W+ b, the situation is quite dif-
ferent since the SM electroweak corrections [25] and the max-
imal SUSY electroweak corrections [10] in the α-scheme are
much smaller than for the decay t→ H+ b , namely they are of
the order of ∆r. Therefore, for the standard decay t → W+ b
there is a significant cancellation between the corrections in
the α-scheme and ∆r in most of the tanβ range resulting in a
substantially diminished correction in the GF -scheme
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only a small fraction of ∆rMSSM is supersymmetric [20],
and we should not be dependent on isolating this univer-
sal, relatively small, part of the total SUSY correction to δ.
To put in a nutshell: if there is to be any hope to measure
supersymmetric quantum effects on the charged Higgs de-
cay of the top quark, they should better come from the
potentially large, non-oblique, corrections. The SUSY ef-
fects contained in ∆rMSSM [20], instead, will be measured
in a much more efficient way from a high precision deter-
mination of MW at LEP 200 and at the Tevatron.

Another useful quantity is the branching ratio

BH ≡ BR(t→ H+ b) =
ΓH

ΓW + ΓH + ΓSUSY
, (77)

where ΓW ≡ Γ (t → W+ b) and ΓSUSY stands for decays
of the top quark into SUSY particles. In particular, the
potentially important SUSY-QCD mode t → t̃1 g̃ is kine-
matically forbidden in most part of our analysis where
we usually assume mg̃ = O(300)GeV . There may also
be the competing electroweak SUSY decays t → t̃1 χ

0
α

and t → b̃1 χ
+
i for some α = 1, ..., 4 and some i = 1, 2.

However, while the former decay is almost always open,
it is not tanβ-enhanced in our favourite segment (17),
and the latter decay is phase space obstructed in most of
our explored parameter space since we typically assume
mb̃1

= 150GeV . In general, ΓSUSY in (77) is given by

ΓSUSY = Γ (t→ t̃1 g̃) +
∑
α

Γ (t→ t̃1 χ
0
α)

+
∑
i

Γ (t→ b̃1 χ
+
i ) . (78)

The various terms contributing to this equation are com-
puted at the tree-level. Similarly, we treat the compu-
tation of the partial width of the standard mode t →
W+ b at the tree-level. This is justified since, as shown
in Refs.[10–12], this decay cannot in general develop large
supersymmetric radiative corrections, or at least as large
as to be comparable to those affecting the charged Higgs
mode (for the same value of the input parameters). The
reason for it stems from the very different structure of the
counterterms for both decays; in particular, the standard
decay mode of the top quark does not involve the mass
renormalization counterterms for the external fermion
lines, and as a consequence the aforementioned large quan-
tum effects associated to the bottom quark self-energy at
high tanβ are not possible.

Figures 8–13 display in a clear-cut way our main nu-
merical results. We wish to point out that they have been
thoroughly checked. Scale independence of δ, (75), and
cancellation of UV-divergences have been explicitly ver-
ified. Most of the analytical and numerical calculations
have been doubled. In particular, we have constructed two
independent numerical codes and checked that the two ap-
proaches perfectly agree at different stages.

We present our results for µ < 0 8. We observe that
the leading SUSY-QCD effects on δ are then positive.

8 The problem with µ > 0 is that in this case the large SUSY-
QCD corrections have the same (negative) sign as the conven-
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Fig. 8. The total partial width, ΓMSSM (t→ H+ b), including
all MSSM effects, versus tanβ, as compared to the tree-level
width and the QCD-corrected width. Also plotted is the tree-
level partial width of the standard top quark decay, t→W+ b.
The masses of the top and bottom quarks are mt = 175GeV
and mb = 5GeV , respectively, and the rest of the inputs are
explicitly given. We remark that At = Ab = ... ≡ A is a com-
mon value of the trilinear coupling for all squark and slepton
generations. Unless explicitly stated otherwise, the inputs stay-
ing at fixed values in the remaining figures are common to the
values stated here

This means that in these circumstances the potentially
large strong supersymmetric effects are in frank compe-
tition with the conventional QCD corrections, which are
also very large and stay always negative as will be dis-
cussed later on.

Needless to say, a crucial parameter to be investigated
is tanβ. In Fig. 8 we plot the tree-level width, Γ0(t →
H+ b), and the total partial width, ΓMSSM (t → H+ b),
comprising all the MSSM effects, as a function of tanβ.
Also shown in Fig. 8 is the (tree-level) partial width of the
standard top quark decay t → W+ b, which is (as noted
above) far less sensitive to quantum corrections. For con-
venience, we have included in Fig. 8 a plot of ΓQCD(t →
H+ b), i.e. the partial width that would be obtained in the
presence of only the standard QCD corrections. In prac-
tice, this is tantamount to saying that ΓQCD(t→ H+ b) is
the partial width that would be expected in the absence
of SUSY effects, for the electroweak non-supersymmetric

tional QCD effects, and as a consequence the total MSSM cor-
rection can easily blow up above 100%, the branching ratio be-
coming negative!. To avoid this disaster (from the point of view
of perturbation theory!), one must enforce the SUSY-QCD cor-
rection to be small enough by assuming sbottom masses of
O(1)TeV
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Fig. 9. a The relative corrections δ, (75), as a function
of tanβ. Shown are the SUSY-EW, standard EW (i.e. non-
supersymmetric electroweak), SUSY-QCD, standard QCD,
and total MSSM contribution, (80); b The branching ratio
(77), as a function of tanβ; separately shown are the values
of this observable after including standard QCD corrections,
full MSSM corrections, and the tree-level value

corrections turn out to be negligible versus the ordinary
QCD effects.

The individual influence of the parameters is tested
in Figs. 9 to 13. To appraise the relative importance of
the various types of MSSM effects on Γ (t → H+ b), in
Figs. 9a–9b we provide plots for the correction to the par-
tial width, (75), and to the branching ratio, (77), as a
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Fig. 10. a The relative corrections δ, (75), as a function of
the gluino mass, mg̃, for the SUSY-EW, standard EW, SUSY-
QCD, standard QCD contributions, and total MSSM contri-
bution, b δ as a function of the supersymmetric Higgs mixing
parameter µ (assuming µ < 0) for the various contributions as
in Fig. 9a

function of tanβ, reflecting the various individual contri-
butions. Specifically, we show in Fig. 9a:

– (i) The supersymmetric electroweak contribution from
genuine (R-odd) sparticles (denoted δSUSY−EW), i.e.
from sfermions (squarks and sleptons), charginos and
neutralinos;

– (ii) The electroweak contribution from non-supersym-
metric (R-even) particles (δEW ). It is composed of two
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Fig. 11. a The relative corrections δ, (75), as a function of
the trilinear soft SUSY-breaking parameter Ab in the bottom
sector. The other trilinear couplings are kept as in Fig. 8; b
As in a, but for the trilinear soft SUSY-breaking parameter
At in the top sector. Shown are the same individual and total
contributions as in Fig. 9a

distinct types of effects, namely, those from Higgs and
Goldstone bosons (collectively called “Higgs” contri-
bution, and denoted δHiggs) plus the leading SM ef-
fects [19] from conventional fermions (δSM):

δEW = δHiggs + δSM ; (79)

The remaining non-supersymmetric electroweak effects
are subleading and are neglected.
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Fig. 12. The relative corrections δ, (75), for the various contri-
butions as in Fig. 9a, as a function of: a The lightest sbottom
mass, mb̃1

; b The lightest stop mass, mt̃1

– (iii) The strong supersymmetric contribution (denoted
by δSUSY−QCD) from squarks and gluinos;

– (iv) The strong contribution from conventional quarks
and gluons (labelled δQCD); and

– (v) The total MSSM contribution, δMSSM, namely, the
net sum of all the previous contributions:

δMSSM = δSUSY−EW+δEW+δSUSY−QCD+δQCD. (80)

In Fig. 9b we reflect the impact of the MSSM on the
branching ratio, as a function of tanβ; also shown are the
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Fig. 13. a The relative corrections δ, (75), as a function of
the charged Higgs mass; b The supersymmetric (δτSUSY−EW)
and non-supersymmetric (δτEW) electroweak contributions to
δ, (75), from the process-dependent term ∆τ , (46), as a func-
tion of tanβ

tree-level value of the branching ratio and the latter quan-
tity after including the (non-supersymmetric) QCD cor-
rections. A typical common set of inputs has been chosen
in Figs. 9a–9b such that the supersymmetric electroweak
corrections reinforce the strong supersymmetric effects.
For this set of inputs, the total MSSM correction to the
partial width of t → H+ b is positive for tanβ > 20 (ap-
prox.). Remarkably enough, this is so in spite of the huge
negative effects induced by conventional QCD. In fact,

we see that the gluon yield is overridden by the gluino
pay-off provided tanβ is sufficiently large: tanβ ≥ 30. Be-
yond this value, the strength of the supersymmetric loops
becomes rapidly overwhelming; e.g. at the representative
value tanβ = mt/mb = 35 we find δMSSM ' +27%; and
at tanβ ' 50, which is the preferred value claimed by
SO(10) Yukawa coupling unification models [6], the cor-
rection is already δMSSM ' +55%. Quite in contrast, at
that tanβ one would expect, in the absence of SUSY ef-
fects, a (QCD) correction of about −57%, i.e. virtually of
the same size but opposite in sign!

Coming back to Fig. 8, we see that, after including the
SUSY effects, the partial width of t → H+ b equals the
partial width of the standard decay t → W+ b near the
“SO(10)” point tanβ = 50. (The meeting point is actu-
ally a bit earlier in tanβ, after taking into account the
known [10,11], negative, SUSY corrections to t → W+ b,
but this effect is not shown in Fig. 8 since it is relatively
small.) Now, for the typical set of parameter values intro-
duced in Fig. 8, the top quark decay width into SUSY par-
ticles, (78), is rather tiny. Thus it is not surprising that in
these conditions the branching ratio of the charged Higgs
mode can be remarkably high: BR(t→ H+ b) ' 50%, i.e.
basically 50% − 50% versus the standard decay mode. In
contrast, the branching ratio without SUSY effects (i.e.
essentially the QCD-corrected branching ratio) is much
smaller: at the characteristic SO(10) value, tanβ = 50, it
barely reaches 20%. Clearly, if the SUSY quantum effects
are there, they could hardly be missed!

As noted before, even though the dominant MSSM ef-
fects are, by far, the QCD and SUSY-QCD ones, they have
opposite signs. Therefore, there is a crossover point of the
two strongly interacting dynamics, where the conventional
QCD loops are fully counterbalanced by the SUSY-QCD
loops. This leads to a funny situation, namely, that at the
vicinity of that point the total MSSM correction is given
by just the subleading, albeit non-negligible, electroweak
supersymmetric contribution: δMSSM ' δSUSY−EW. The
crossover point occurs at tanβ >∼ 32 ' mt/mb, where
δSUSY−EW

>∼ 20. For larger and larger tanβ beyond
mt/mb, the total (and positive) MSSM correction grows
very fast, as we have said, since the SUSY-QCD loops
largely overcompensate the standard QCD corrections. As
a result, the net effect on the partial width appears to be
opposite in sign to what might naively be “expected” (i.e.
the QCD sign). Of course, this is not a general result since
it depends on the actual values of the MSSM parameters.
In the following we wish to explore the various parameter
dependences and in particular we want to assess whether
a favourable situation as the one just described is likely
to happen in an ample portion of the MSSM parameter
space. In particular, the value tanβ = mt/mb = 35 will
be chosen in all our plots where that parameter must be
fixed. We consider it as representative of the low end of
the high tanβ segment, (17). Thus tanβ = mt/mb = 35
behaves as a sort of threshold point beyond which the
MSSM quantum effects on t→ H+ b take off so fast that
they should have indelible experimental consequences on
top quark physics.
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As regards to the non-supersymmetric electroweak cor-
rections, δEW, it is apparent from Fig. 9a that they are
very small, especially in the high tanβ segment. Also in
the very low tanβ segment, 0.5 <∼ tanβ <∼ 1, δEW is rela-
tively small. As it happens, we end up with the fact that
the complicated Higgs effects result in a tiny contribu-
tion, except in the very low tanβ end, where e.g. they can
reach −15% at tanβ ' 0.5. In this corner of the parameter
space, δHiggs becomes the dominant part of δMSSM

9.
We come now to briefly discuss the standard QCD ef-

fects up to O(αs), which involve one-loop gluon correc-
tions and gluon bremsstrahlung [8]. As it is plain from
Fig. 9a, δQCD is negative-definite and very important in
the high tanβ segment. It quickly saturates for tanβ >∼ 10
at a large value of order −60%. Therefore, the QCD effects
need to be considered in order to isolate the virtual SUSY
signature [8]. The leading behaviour of the standard QCD
component in the relative correction (75) can be easily
assessed by considering the following asymptotic formula

δQCD = − 2αs
3π(m2

b tan2 β +m2
t cot2 β)

×
[
4π2 − 15

6
(m2

b tan2 β +m2
t cot2 β) (81)

+3(4 + tan2 β − 2
M2
H+

m2
t

cot2 β)m2
b ln

(
m2
t

m2
b

)]
,

which we have obtained by expanding the exact one-loop
formula up to O(m2

b/m
2
t ,M

2
H+/m2

t ). Here αs ≡ αs(m2
t ),

normalized as αs(M2
Z) ' 0.12. The big log factor

ln(m2
t/m

2
b) originates from the running b-quark mass eval-

uated at the top quark scale. The correction is seen to be
always negative. We point out that while we have used the
exact O(αs) formula for the numerical evaluation, the ap-
proximate expression given above is sufficiently accurate
to convey the general features to be expected both at low
and at high tanβ. In particular, for mb 6= 0 and tanβ in
the relevant high segment (17), the QCD correction be-
comes very large and saturates at the value

δQCD = −2αs
π

(
4π2 − 15

18
+ ln

m2
t

m2
b

)

' −59% (tanβ >>
√
mt/mb ' 6) . (82)

At low values of tanβ, the corrections are much smaller,
as it follows from the approximate expression δQCD '
(−αs/π)(8π2−30)/18 ' −9.5%. We remark that for mb =
0 the dependence on tanβ totally disappears from (82),
so that one would never be able to suspect the large con-
tribution (82) in the high tanβ regime. The limit mb = 0,
nevertheless, has been considered for the standard QCD
corrections in some places of the literature but, as we have
seen, it is untenable unless one concentrates on values of
tanβ of order 1, in which case the relevance of our decay
for SUSY is doomed to oblivion. This situation is similar
to the one mentioned above concerning the SUSY-QCD

9 We have treated in detail the very low tan β segment by
including the one-loop renormalization of the Higgs masses [15]

corrections in the limit mb = 0, which leads to an scenario
totally blind to the outstanding supersymmetric quantum
effects obtained for mb 6= 0 at high tanβ [9].

Worth noticing is the evolution of the quantities (75)
and (77) as a function of the gluino mass (Cf. Fig. 10a).
Of course, only the SUSY-QCD component is sensitive
to mg̃. The steep falls in Fig. 10a are associated to the
presence of threshold effects occurring at points satisfying
mg̃ +mt̃1

' mt. Away from the threshold points, the be-
haviour of δSUSY−QCD is smooth and perfectly consistent
with perturbation theory. Of course, the branching ratio
(77) is insensitive to these singularities since they are com-
pensated for by the simultaneous opening of the two-body
supersymmetric mode t → t̃1 g̃, for mg̃ < mt −mt̃1

. We
emphasize that the relevant gluino mass region for the de-
cay t→ H+ b is not the light gluino region, but the heavy
one, the reason being that the important self-energy cor-
rection mentioned above, (72), involves a gluino mass in-
sertion. The correction raises with the gluino mass up to
a long flat maximum before bending –very gently – into
the decoupling regime (far beyond 1TeV ). The fact that
the decoupling rate of the gluinos appears to be so slow
has an obvious phenomenological interest.

Next we consider the sensitivity of our decay on the
higgsino-gaugino parameters (µ,M) characterizing the
chargino-neutralino mass matrices. We start with the su-
persymmetric Higgs mixing mass, µ. As already stated
above, we concentrate on the µ < 0 case. We also choose
At > 0, which makes the electroweak corrections to add up
with the SUSY-QCD ones. The evolution of the individual
contributions (80), together with the total MSSM yield,
as a function of µ, is shown in Fig. 10b for given values
of the other parameters. We immediately gather from this
figure that the total MSSM correction is extremely sensi-
tive to µ. This is already patent at the level of the leading
δmb/mb effects given by (72) and (74). In all figures where
a definite µ is to be chosen, we have taken the moderate
value µ = −150GeV . As for the sensitivity of the correc-
tions on the SU(2)L-gaugino soft SUSY-breaking param-
eter, M , we have checked that it is virtually non-existent.

There is some slight evolution of the corrections with
Ab (Fig. 11a), mainly on the SUSY-QCD side. Once the
sign µ < 0 is chosen, the correction is larger for negative
values of Ab than for positive values. We have erred on
the conservative side by choosing Ab = +300GeV wher-
ever this parameter is fixed. As far as At is concerned,
δSUSY−QCD can only evolve as a function of that param-
eter through vertex corrections, which are proportional
to At cotβ; however, at large tanβ these are very de-
pressed. The electroweak correction δSUSY−EW, instead,
is very much dependent on At (Fig. 11b). We realize that
δSUSY−EW changes sign with At – Cf. the leading piece
(74). In Fig. 11b, δMSSM also changes sign with At just be-
cause the parameter set used is such that the conventional
QCD effects are almost cancelled by the SUSY-QCD ones.
The shaded vertical band in Fig. 11b is excluded by inter-
nal consistency in the choice of parameters in Fig. 8.

Another very crucial parameter to be investigated is
mb̃1

. This is because the SUSY-QCD correction hinges a
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great deal on the value of the sbottom masses, as it is
plain from (72). As a matter of fact, a too large a value of
mb̃1

could upside down the leadership of the SUSY-QCD
effects. As a typical mass value for all squarks other than
the stop we use mq̃ ≥ 150−200GeV (q̃ 6= t̃). From Fig. 12a
we see that provided mb̃1

<∼ 300GeV the SUSY-QCD ef-
fects remain dominant, but they go down the larger is mb̃1

.
The electroweak correction δSUSY−EW , on the other hand,
is quite sustained with increasing mb̃1

and there are pa-
rameter configurations where for sufficiently heavy sbot-
toms the supersymmetric electroweak effects are larger
than the SUSY-QCD effects. However, this is not the most
likely situation. Obviously, the evolution of the SUSY-
QCD corrections with the stop masses is basically flat
(Fig. 12b) since the leading contribution is independent
of mt̃1

. Therefore, for definiteness we fix mt̃1
' 100GeV .

The influence from the sleptons and the other squarks
is practically irrelevant as we have verified. They enter the
correction through oblique (universal) quantum correc-
tions. The only exception are the τ -sleptons τ̃a (“staus”),
since they are involved in the process-dependent (non-
oblique) contribution (46), where the τ -lepton Yukawa
coupling becomes enhanced at large tanβ. We have also
tested the variation of our results as a function of the
charged Higgs mass, MH+ , which up to now it has been
fixed at MH+ = 120GeV . We confirm from Fig. 13a that
there is nothing special in the chosen value for that pa-
rameter since the sensitivity of the correction is generally
low.

We close our study of the split corrections by plotting
δτ as a function of tanβ (see Fig. 13b). By definition, δτ
is that part of δMSSM originating from the full process-
dependent term ∆τ , (46), which stems from our defini-
tion of tanβ on (43). This piece of information is relevant
enough. In fact, it should be recalled that the quantum
corrections described in the previous figures are scheme
dependent. In particular, they rely on our definition of
tanβ given on (43). What is not scheme dependent, of
course, is the predicted value of the width and branching
ratio (Figs. 8 and 9b) after including all the radiative cor-
rections. Now, from Fig. 13b it is clear that the ∆τ -term
is not negligible, and so there is a process-dependence in
our definition of tanβ, as it was announced in Sect. 3.
At first sight, the δτ -effects are not dramatic since they
are small as compared to δSUSY−QCD, but since the lat-
ter is cancelled out by standard QCD (for our parameter
choice) we end up with δτ being of the order (roughly half
the size) of the electroweak correction δSUSY−EW.

The main source of process-dependent δτ -effects lies
in the corrections generated by the τ -mass counterterm,
δmτ/mτ , and can be easily picked out in the electroweak-
eigenstate basis (see Fig. 14) much in the same way as
we did for the b-mass counterterm. There are, however,
some differences, as can be appraised by comparing the
diagrams in Figs. 7 and 14, where we see that in the latter
case the effect derives from diagrams involving τ -sleptons
with gauginos or mixed gaugino-higgsinos. A straightfor-
ward computation of the diagrams (a) + (b) in Fig. 14
yields

(b)

τRτL

W
~

H
~

2 H
~

1

ν~τ

(a)

τRτL

B
~

m  Mτ LR
τ

τL
~ τR

~⊗

Fig. 14. Leading supersymmetric electroweak contributions to
δmτ/mτ in the electroweak-eigenstate basis

δmτ

mτ
=

g′2

16π2 µM
′ tanβ I(mτ̃1 ,mτ̃2 ,M

′)

+
g2

16π2 µM tanβ I(µ,mν̃τ ,M) , (83)

where g′ = g sW /cW and M ′,M are the soft SUSY-brea-
king Majorana masses associated to the bino B̃ and winos
W̃±, respectively, and the function I(m1,m2,m3) is again
given by (73). The sum of the two contributions in (83)
indeed shows that it reproduces to within few percent the
full numerical result (Cf. Fig. 13b) that we previously ob-
tained in the mass-eigenstate basis, thus confirming that
(83) gives the leading contribution.

From all the previous discussion a fact stands out
which can be hardly overemphasized, to wit: If the charged
Higgs decay mode of the top quark, t→ H+ b, does show
up with a branching ratio of order 10% or above (perhaps
even as big as 50%), a fairly rich event statistics will be
collected at the Tevatron and especially at the LHC. If, in
addition, it comes out that the dynamics underlying that
decay is truly supersymmetric, then the valuable quantum
signatures that our calculation has unveiled over an ample
portion of the MSSM parameter space should eventually
become manifest and, for sure, we could not miss them.

At present all the collected event statistics on top
quarks basically relies on our experimental ability to rec-
ognize top quarks from standard patterns (angular dis-
tribution, energy spectrum, jet topology etc.) associated
to the usual Drell-Yan production mechanism and subse-
quent SM decays. Notwithstanding, we wish to point out
that it should in principle be possible to clutch at the
supersymmetric virtual corrections associated to the ver-
tex t bH+ also through an accurate measurement of the
various inclusive top quark and Higgs boson production
cross sections in hadron colliders. For instance, in [26] we
sketched a few alternative mechanisms which would gen-
erate top quark production patterns heavily hinging on
the properties of the interaction vertex t bH+ – and simi-
larly for th q q̄ A0(h0, H0) vertices. Thus, while the vertex
t bH+ could be responsible in part for the decay of the top
quark once it is produced, it might as well be at the root
of the production process itself at LHC energies, where it
could take over from Drell-Yan production.

We conclude our discussion with the following remark.
Whereas, on the one hand, one expects that some top
quark partial widths will be determined with an accuracy
of 10% at the upgraded Tevatron and perhaps better than
10% at LHC [16], on the other hand we believe that from
the point of view of an inclusive model-independent mea-
surement of the total top-quark width, Γt, the future e+ e−
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supercollider should be a better suited machine [27]. For,
in an inclusive measurement, all possible non-SM effects
will appear on top of the corresponding SM effects al-
ready computed in the literature [25]. Moreover, as shown
in [27], one hopes to be able to measure the total top-quark
width in e+ e− supercolliders at an unmatched precision
of ∼ 4% on the basis of a detailed analysis of the thresh-
old effects in the cross-section. Under the assumption that
ΓH ' ΓW , and that the SUSY effects on Γt are purely
virtual effects, it follows that a large SUSY correction of,
say 50%, to t→ H+ b translates into a 20% correction to
Γt. This effect could not escape detection. Thus, the com-
bined information from a future e+ e− supercollider and
from present and medium term hadron machines can be
extremely useful to pin down the nature of the observed
effects. Our general conclusion is, therefore, extremely en-
couraging: In view of the potentially large size and large
variety of manifestations, quantum effects on top quark
and Higgs boson physics could be the clue to the discov-
ery of “virtual” Supersymmetry.
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